

Jonathan E. Rhoads, MD 1907-2002

A Tissue-engineered Stem Cell Vascular Graft

Paul DiMuzio, MD Thomas Jefferson University

The Problem

- Treatment of peripheral and coronary artery disease
 - Endovascular therapy
 - Bypass grafting
- Autologous tissue for bypass
 Gold standard

- Unavailable in 40% of patients

- Current alternatives
 - Prosthetic grafts
 - Biological grafts
 - Venous allografts

Patency @ 2 years

VASCULAR TISSUE ENGINEERING

Vascular Tissue Engineering

- Replication of vascular tissue
- Components of <u>blood vessels</u>:
 - Matrix (scaffolding)
 - Collagen
 - Elastin
 - Cells
 - Endothelial cells
 - Smooth muscle cells

Development of a Tissue-engineered Stem Cell Vascular Graft

- 1. Matrix
- 2. Cells
- 3. Graft Creation
- 4. Graft Modifications
- 5. Future Directions

1. MATRIX

Matrix (scaffolding) options in Vascular Tissue Engineering

- Prosthetics
 - Non-absorbable: PTFE, Dacron grafts
 - Absorbable: PEG
- Collagen tubes
- Vascular allografts
 - <u>Decellularized</u> to reduce antigenicity
 - -<u>Veins</u> or arteries

Human GSV Decellularized with SDS

Fresh vein

Decellularized vein

SDS removes all EC cells

Fresh vein

Decellularized vein

GSV matrix well-preserved after SDS decellularization

Fresh vein

Decellularized vein

Collagen: 45 4% vs 41 7% (P>0.05) **Elastin:** 10 4% vs 8 3% (P=0.02)

Burst Strength is preserved

2480 460 vs 2380 620 mmHg (n=10, P>.05)

Suture Holding Strength is preserved

185 30 vs. 178 66 g (n=10, P>.05)

In vivo testing of decellularized vein

- Canine model
 - Jugular vein
 - Carotid interposition graft
- Groups
 - Autograft (n=22)
 - Allograft (n=10)
 - <u>Decell. Allograft</u> (n=12)

Gross Appearance @ 2 months

Autograft	Allograft	Decell. Allograft
-----------	-----------	-------------------

Histologic Appearance @ 2 months

Immunologic Response @ 2 weeks

Mononuclear cell infiltrate (cell/hpf):					
Autograft:	19±8				
Allograft:	59±24*				
Decell. Allograft:	19±15				
	(*n=4, P<.05)				

Cellular Repopulation of Decellularized Vein in vivo

SMC α -actin MAb

Summary: Decellularized vein allograft

- Readily available and easy to produce
- Similar strength to natural vein
- Reduced antigenicity
- Luminal surface remains thrombogenic

2. CELLS

Cell options for Vascular Tissue Engineering

- Endothelial cells (EC)
 - Large and small vessel EC
 - Endothelial progenitor cells (from blood)
 - <u>Mesenchymal stem cells</u> (bone marrow, <u>fat</u>, amnionic fluid)
- Smooth muscle cells

ASC Isolation Technique

ASC

ASC Surface Markers

Differentiation of ASC into EC

- Chemical stimulus
 - Endothelial cell growth supplement
- Physical stimuli
 - Shear stress
 - Contact with basement membrane

<u>Cell line</u>	<u>CD31</u>	<u>eNOS</u>	<u>vWF</u>	<u>Matrigel</u> Cords
EC	+	+	+	
SMC	-	-	-	
ASC	-	-	-	

Response to: ECGS

<u>Cell line</u>	<u>CD31</u>	<u>eNOS</u>	<u>vWF</u>	<u>Matrigel</u> Cords
EC	+	+	+	
SMC	-	-	-	
ASC	-	-	-	
ASC +ECGS	+	-	+	

Response to: ECGS

<u>Cell line</u>	<u>CD31</u>	<u>eNOS</u>	<u>vWF</u>	<u>Alignment</u>	Response to: Shear Force
EC	÷	÷	÷	+	
SMC	-	-	-	-	
ASC	-	-	-	-	
ASC +ECGS	+	_	+	+	

Shear upregulates EC molecular markers

Shear promotes non-thrombogenic phenotype

Cell Summary: Endothelial differentiation of ASC

- Promoted by growth factors, shear
- Acquisition of morphological features in response to Matrix, shear
- Acquisition of key molecular markers, <u>but not eNOS</u>
- Readily available in elderly patients with vascular disease

3. GRAFT CREATION

Endothelial cell seeding

- <u>Mansfield</u>, 1970: growth of endocardial cells on Dacron suture
- <u>Herring</u>, 1978: seeding of Dacron graft with EC
- <u>Weinberg, Bell</u>, 1986: collagen tube seeded with EC
- <u>Jarrell & Williams</u>, 1985: single step pressure "sodding" PTFE
- <u>Zilla</u>, 1990s-present: two step EC-PTFE graft culture

Seeding decellularized vein

- Does the luminal surface have preserved basement membrane for the attachment of the ASC (EC)?
- Variables for seeding:
 - Time for attachment
 - Role of pre-coating

Decellularized Vein has Preserved Basement Membrane

Type IV Collagen MAb

Experimental Model In vitro

Cell Attachment vs Time (n=12)

Candidate materials for Pre-coating

Effect of Pre-coating (n=6)

Vascular graft bioreactor

Initial graft creation

- Decellularized vein allograft
- Pre-coated with fibronectin
- Seeded with autologous stem cells
- Cultured in bioreactor x 3 days

Gross examination @ 2 weeks

Histology @ 2 weeks

Stem Cell Graft:	# of GRAFTS PATENT (2wk)		
Unseeded	6/7		
Seeded	6/7		

Initial Graft Summary

- Success achieved in the various steps of graft creation without:
 - Infection
 - Rupture
- Although patent at 2 weeks, the <u>lumen</u> of the stem cell-seeded graft appeared <u>thrombogenic</u>

4. GRAFT MODIFICATIONS

Graft modifications

- Was the initial "failure" due to poor stem cell <u>retention</u>?
 - Evaluate retention ex vivo and modify seeding technique using <u>flow conditioning</u>
- Or due to poor stem cell <u>function</u>?
 - Evaluate nitric oxide production (NO) and <u>transduce the cells with endothelial nitric oxide</u> <u>synthase</u> (eNOS)

Acute increase in shear dislodges seeded stem cells from graft

Flow conditioning to improve retention of seeded cells

Linear v. Step Fluid Shear Application

"Linear" flow conditioning improves cell retention

Step

Mechanism: Shear stimulates integrin expression

$\alpha_5\beta_1$ important for stem cell attachment

ASC do not produce NO

Adenoviral transfection of ASC with human eNOS gene

Transfected ASC produce NO

NO from transfected ASC stimulates vasodilation

Transfected ASC are retained on decellularized vein @>15 dyne

In vivo evaluation (graft production time ~ 2 weeks)

- Decellularized vein graft (human)
- Seeded with autologous rabbit stem cells
 - Differentiated into EC
 - Flow conditioned
 - Transfected with eNOS
- Implanted into the rabbit aorta
- 2 weeks and 2 months

Gross examination of lumen (2 weeks)

Native rabbit aorta

Actin stain of graft lumen (2 weeks)

H&E stain of graft lumen (2 weeks)

Stem cells

Gross examination of lumen (2 months)

Native rabbit aorta

Stem cell graft

Actin stain of graft lumen (2 months)

Unseeded graft

Duplex examination (2 weeks)

5. FUTURE DIRECTIONS

Future directions

- 1. Create clinically relevant bioreactor (25cm)
- 2. Improve eNOS transfection (nucleofection)
- 3. Explore role of ASC-SMC seeding
- 4. Human clinical trial: Dialysis graft creation

K08	Research	Pre-doctoral	Vascular Fellow,	Funding
Mentors	Associates	student	Residents	
Thomas	Ping	Stephen	Gabor Bagameri, MD	National
Tulenko,	Zhang,	McIlhenny,		Institutes of
PhD	PhD	BS	Lauren Fischer, MD	Health
Irving	Chris		Negar Golesorkhi, MD	American
Shapiro,	DiMatteo,			Vascular
PhD	BS		Dan Grabo, MD	Association
			Nick Tarola, MD Eric Hager, MD	American Heart Association
			Neil Moudgill, MD	Pacific Vascular
		RALI	Jason Comeau, MD	Research
		Sarah Fernandez, MD	Foundation	

