

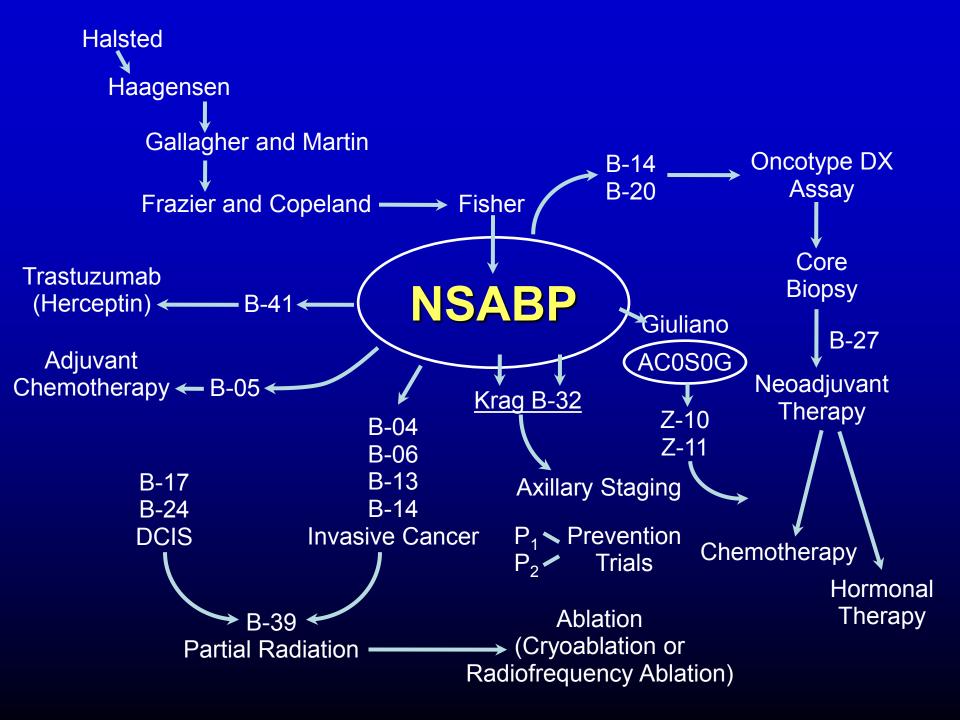
The Annual Rhoads Oration

Philadelphia Academy of Surgery

Monday December 12, 2011

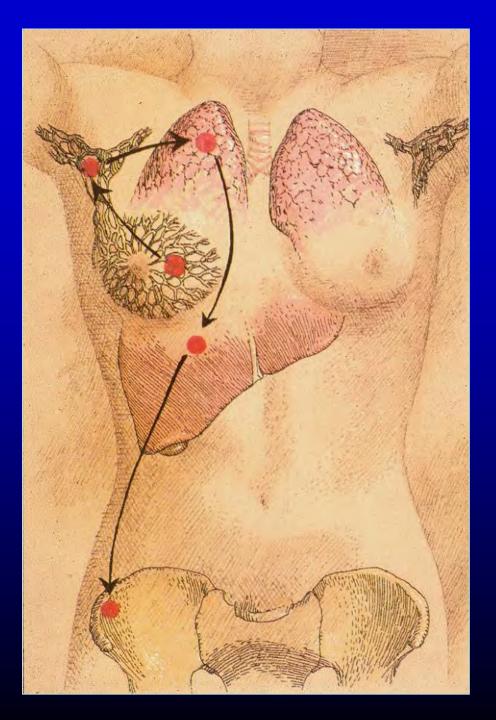
Dr. Jonathan E. Rhoads

Breast Cancer 2011 The Past, The Present and the Future!



Thomas G. Frazier, M.D., F.A.C.S.

Medical Director, Comprehensive Breast Center



- Halsted USA
- Willy Meyer Great Britain
- Described classic radical mastectomy

- Haagensen and Stout
- Columbia
- Criteria for radical mastectomy

Haagensen's Criteria

D istant spread E dema > 1/3 breast L ocal signs of disease 2/4 E dema of arm S upraclavicular node S atellite nodules nflammatory Ca P arastermal (internal mammary) involvement P regnancy - X

ax node 2.5 cm fixation of ax node fixation to ch. wall edema breast 1/3

Brvn Mawr Hospital

Fisher: NSABP – Adjuvant therapy
Bonadonna: Milan – C.M.F.

Gallager and Martin
Pathophysiology of breast cancer

Hyperplasia Atypia In situ carcinoma

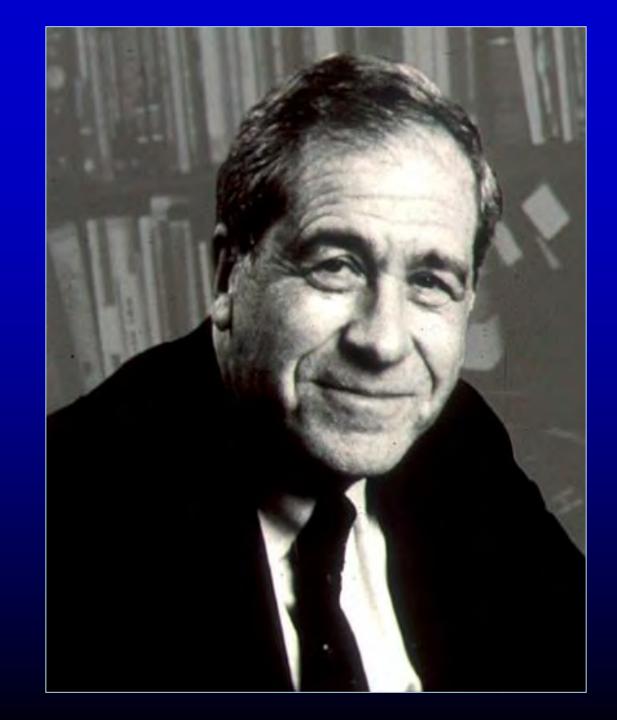
Minimal invasion

Lymph nodes Systemic

1977 Frazier, Copeland, Gallager, et al

- 176 patients
- 20 year survival
- Minimal breast cancer
- 96% (regardless of treatment)

Theory


 Local and regional therapy may have little impact on long term survival in carcinoma of the breast

Dr. Bob Ravdin

"In God We Trust, Everyone Else Needs Data!"

Bernard Fisher

NSABP Clinical Trials

- 1. Local and regional therapy Invasive – B-04 & B-06 DCIS – B-17, B-24, B-35, B-43
- 2. Hormonal therapy B-14, B-20, B-33, B-42
- Prognostic and predictive markers Oncotype-Dx Assay B-14, B-20
- 4. Adjuvant chemotherapy B-13, B-19, B-23, B-36 Taxanes - B-28, B-30, B-38
- 5. Novel therapies B-31, B-41, B-47
- 6. Neoadjuvant approaches B-18, B-27, B-40, B-41

Protocol B-06

2200 patients enrolled

1/3 – Total mastectomy

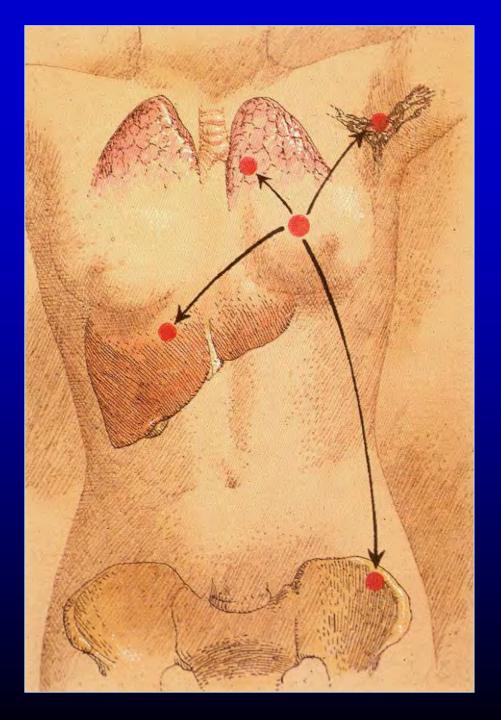
1/3 – Segmental resection "Lumpectomy"

1/3 – "Lumpectomy" and XRT

All Patients Had Axillary Dissection

- Pos nodes
 Chemotherapy
- Neg nodes
 No chemotherapy

At 30 years the survivals are exactly the same for all three options



Second Occurrence at 20 Years

Radiation: 12% No Radiation: 42%

B-04 – Stage I and II Tumors

- 1/3 patients total mastectomy
- 1/3 patients total mastectomy

+ axillary dissection40% positive nodes

+ ax dissection + radiation40% positive nodes

 1/3 patients total mastectomy only Only 20% developed axillary recurrence

Not Every Positive Axilla Becomes a Clinically Positive Cancer

- Patients with positive lymph nodes, but no evidence of spread by blood chemistry, chest x-ray, or bone scan
- ½ received L-pam
- ½ received placebo

Chemotherapy Works to Prevent Recurrence, Especially in Pre-Menopausal Patients with 1-3 Nodes Positive

Companion Studies Stage I and II Tumors – Negative Nodes

 ER negative B-13: 2 years of chemotherapy or no other treatment

 ER positive B-14: 5 years of tamoxifen or 5 years of placebo

Chemotherapy Works Best for ER Negative Tumors

Tamoxifen Works Best for ER Positive Tumors

B-17 DCIS

- 1/2 patients lumpectomy alone
- ½ patients lumpectomy + 6 weeks radiation whole breast

2 nd Events	<u>5 Years</u>	<u>10 Years</u>
Natural History	22%	28%
Radiation	8%	12%

Radiation Reduces Second Occurrences in Patients Who Are Treated for DCIS

DCIS

B-24 – All Patients Had Lumpectomy + 6 Weeks Radiation

- ½ patients 5 years tamoxifen
- ½ patients 5 years placebo
- Recurrence: ↓ by additional 25% in affected breast

 \checkmark by 50% in opposite breast

Tamoxifen Adds to Radiation to Decrease Second Occurrences in Patients with DCIS

Prevention Trials

All Patients Had a Risk of Breast Cancer > 1.7% in 5 Years as Predicted by Gail Model

½ patients - Tamoxifen x 5 years

• $\frac{1}{2}$ patients - Placebo <u>Result</u> Tamoxifen $\frac{1}{2}$ risk of breast cancer by 50%

Tamoxifen Is an Active Medication to Prevent Breast Cancer in High-Risk Women

Caution: Side Effects of Tamoxifen

1) Increases uterine cancer in post menopausal women Approx $1/1000 \rightarrow 2/1000$

2) Increases blood clotting Approx $1/10,000 \rightarrow 4/10,000$

P-2

Post Menopausal Women Risk Greater Than 1.7% in Next 5 Years by Gail Model

- ½ patients Tamoxifen
- ½ patients Raloxifene (evista) x 5 years

<u>Result</u>

At 5 years – Prevention similar with ψ in uterine cancer with evista

At 10 years – Prevention with tamoxifen (50%) superior to prevention with evista (35%)

Bryn Mawr Hospital

Tamoxifen Is Superior to Evista in Preventing Breast Cancer and Can Be Used in Both Pre and Post Menopausal High Risk Women

Tamoxifen Does Carry a Higher Risk for Uterine Cancer and Blood Clots

ER Positive Patients – Node Negative

- ½ patients Had chemotherapy + tamoxifen
- ½ patients had tamoxifen alone

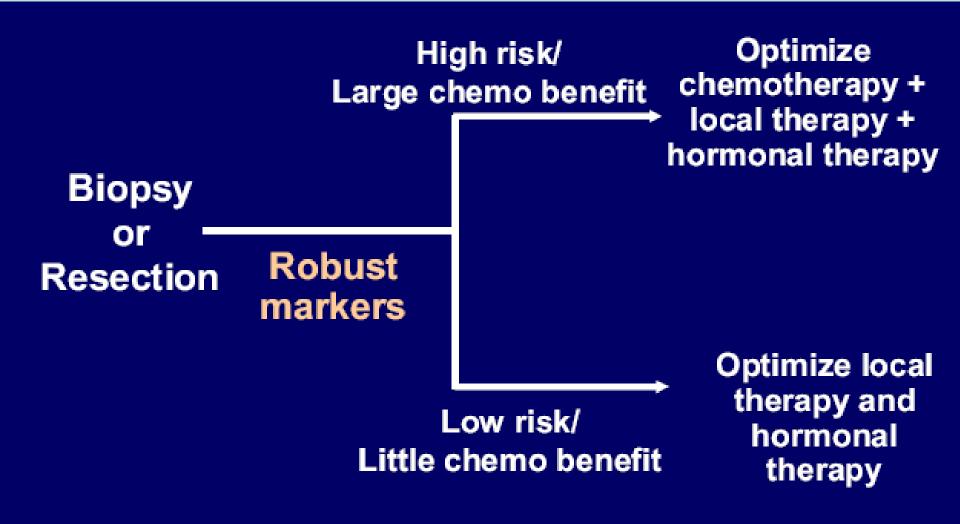
<u>Result</u>

Chemotherapy + tamoxifen had a survival benefit over tamoxifen only

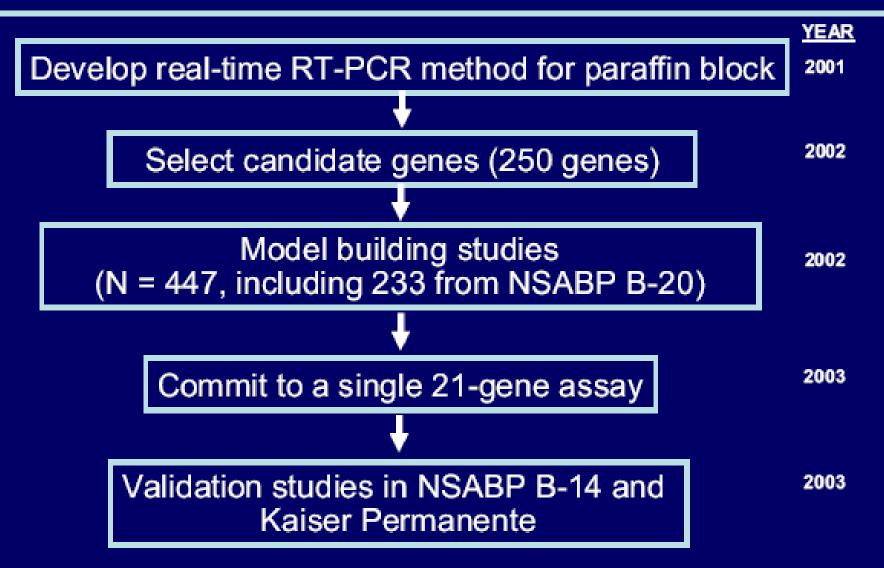
This Raised the Question of Should Every Patient Who is ER Positive Be Treated with Both Chemotherapy and Hormonal Therapy

This Was the Beginning of "Targeted" or Individual Therapy

Oncotype – DX Assay


Breast Cancer Treatment Planning: History

- Treatment planning for N–, ER+ disease is based on:
 - Traditional prognostic factors with limited predictive power (tumor size, patient age) or poor reproducibility (tumor grade)
 - IHC markers (eg, Ki-67) lacking standardization and validation
 - Limited insight into relative benefits of chemotherapy for different individuals


Breast Cancer Treatment Planning: Not Optimized

- Chemotherapy treatment for N–, ER+ disease
 - Many women are offered chemotherapy, knowing that few benefit
 - Prior to 2007, guidelines assumed all patients benefit equally
 - Some patients are under-treated, many others are over-treated

Onco*type* DX[®]: Unmet Clinical Need for Better Markers

Development and Validation of a 21-Gene Assay for N–, ER+, Tam+ Patients

Paik et al. N Engl J Med. 2004;351:2817-2826. 8

Oncotype DX[®] gene panel was developed from clinical trial evidence

- 250 cancer-related genes were selected
- Genes were analyzed for expression and relapse-free interval correlations across 3 independent studies of 447 breast cancer patients

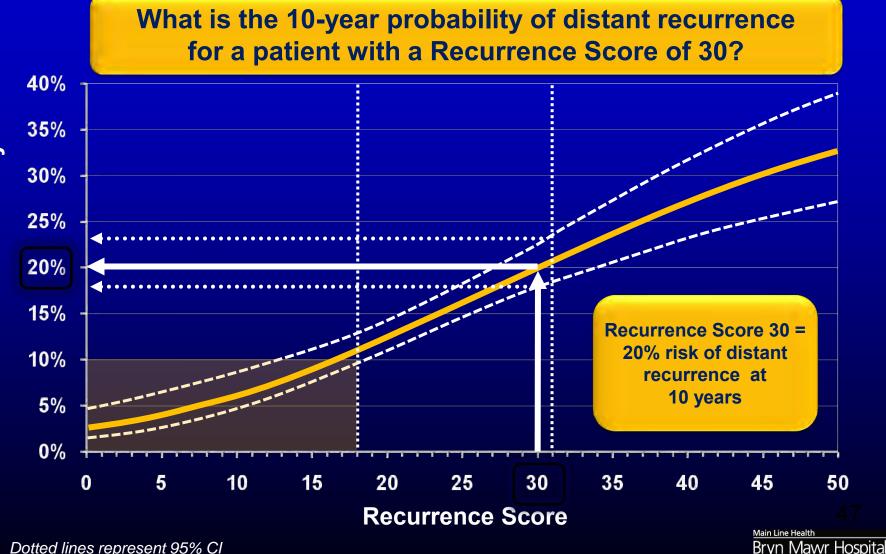
Study site	N	Node status	ER status	Treatment
NSABP B-20, Pittsburgh, PA	233	N–	ER+	Tamoxifen (100%)
Rush University, Chicago, IL	78	≥ 10 positive nodes	ER+/-	Tamoxifen (54%) Chemotherapy (80%)
Providence St. Joseph's Hospital, Burbank, CA	136	N+/	ER+/–	Tamoxifen (41%) Chemotherapy (39%)

From these studies, 21 genes were selected

Oncotype DX[®] Recurrence Score[®] result: calculated from 21 different genes

16 CANCER RELATED GENES

5 REFERENCE GENES

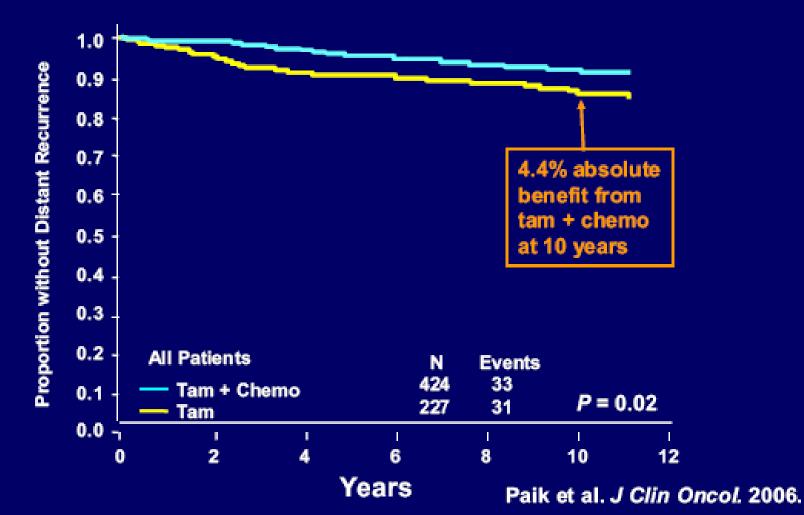

Oncotype DX[®] Recurrence Score[®] result calculation and risk categories

F	Recurrence Score =	 + 0.47 × HER2 Group Score - 0.34 × Estrogen Group Score + 1.04 × Proliferation Group Score + 0.10 × Invasion Group Score + 0.05 × CD68 - 0.08 × GSTM1 - 0.07 × BAG1 	
	<u>Risk group</u>	Recurrence Score	
	Low risk	< 18	
	Intermediate risk	18 - 30	
)	High risk	≥ 31	

Paik et al. N Engl J Med. 2004;351:2817-2826.

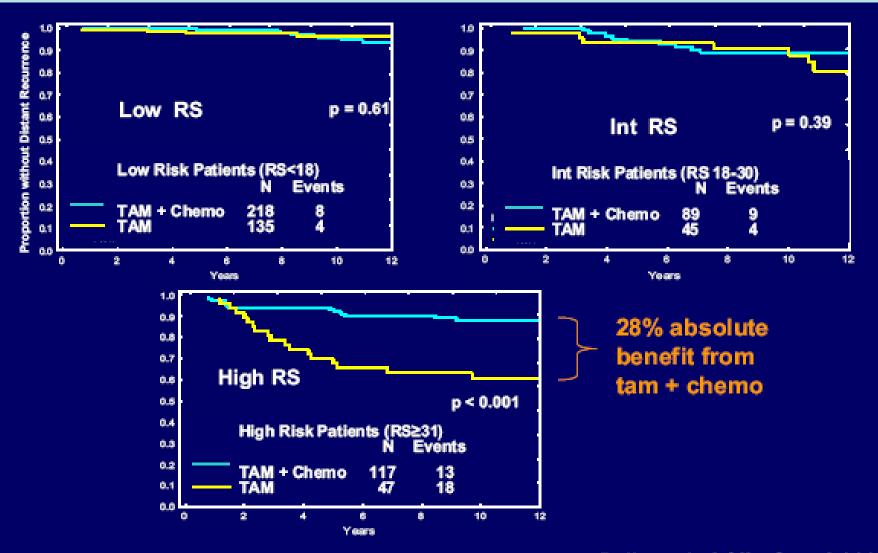
Main Line Health					
Bryn	Mawr	Hospital			

The Onco*type* DX[®] Recurrence Score[®] result is a continuous predictor of recurrence risk

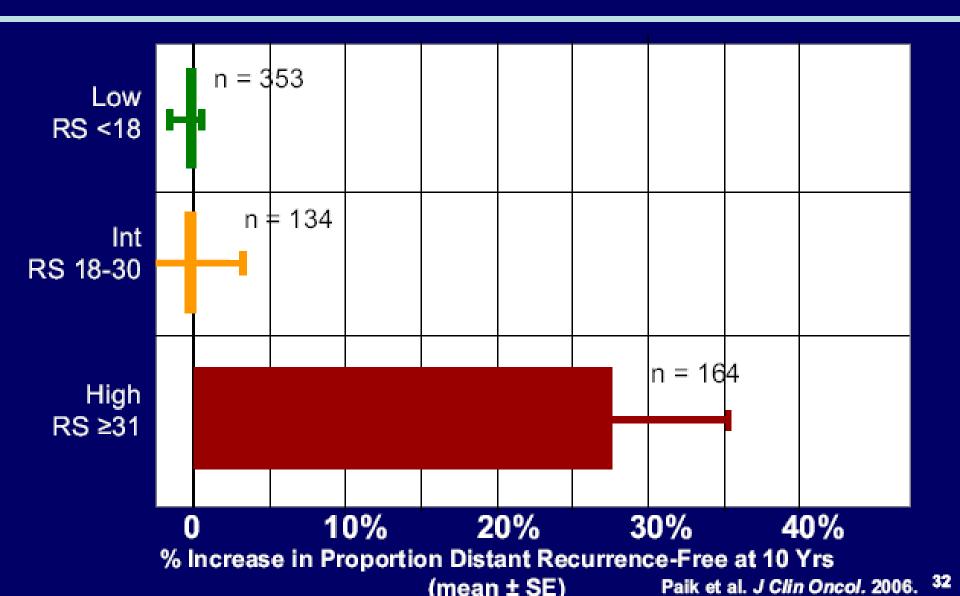


10 years Distant recurrence at

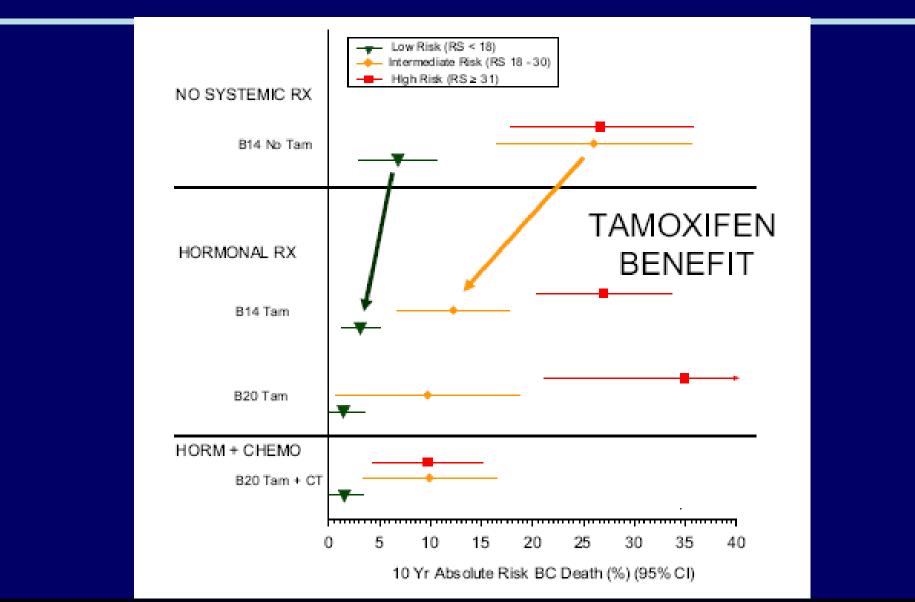
Dotted lines represent 95% CI

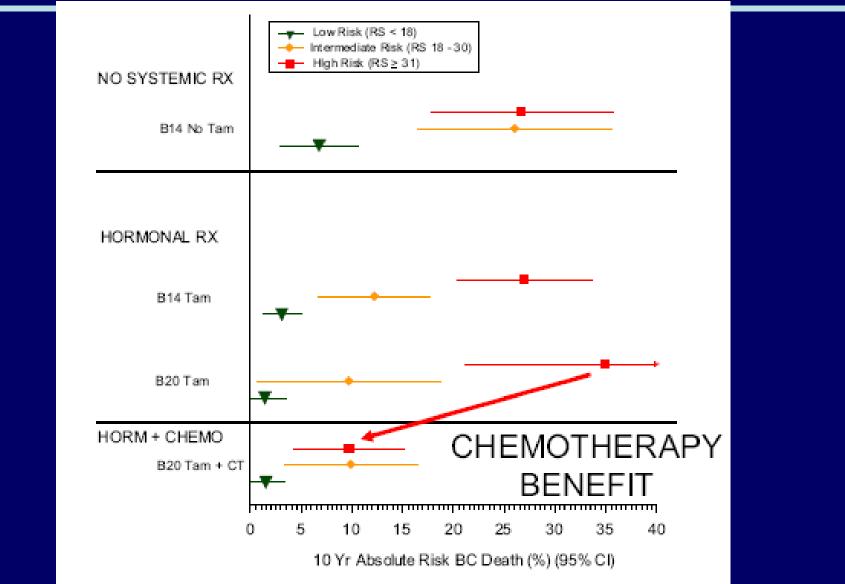

B-20 Results

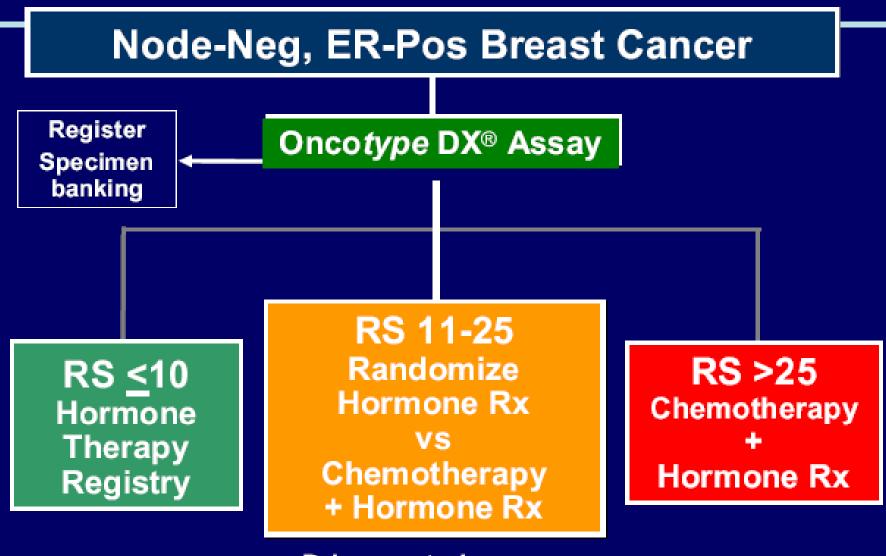
Tam vs Tam + Chemo – All 651 Patients



30


B-20 Results: Tam vs Tam + Chemo


B-20 Results: Absolute % Increase in Proportion Distant Recurrence-Free at 10 Years


Largest Tamoxifen Benefit Observed in Low- and Intermediate-Risk Recurrence Score Groups

Largest Chemotherapy Benefit Observed in High-Risk Recurrence Score Group

Schema: TAILORx

Primary study group

A genomic approach should be the Gold Standard for adjuvant treatment recommendations.

Newer Approaches for Breast Cancer Treatment

Partial breast irradiation
 Sentinel node mapping

• B-32 results

Z011 results3) Other areas of research

1991-1992

Morton – Lymphazurin Blue Dye Melanoma

Morton - Concept of sentinel node mapping -

- Evaluation of first node(s) to drain from tumor
- If negative, no benefit to further dissection

Giuliano – Applied concept of "Blue Node" to axillary dissection for breast cancer

1923 - Braithwaite Sentinel node in gastric carcinoma

1991-1992 - Morton Blue node in melanoma

1993 - Krag Radioisotopes for sentinel node detection

1993 - Krag

Used Technetium-99 for mapping, identifying sentinel node(s) with a hand-held gamma probe, rather than relying on visual identification alone

Question

Could less surgery be done (more precise surgery?) by limiting the axillary dissection to sentinel nodes only?

Two Major Trials – + One Companion Trial

NSABP – B-32- KRAG

 All Patients Had Mapping Sentinel Node Negative

 $\frac{1}{2}$ completion dissection $\frac{1}{2}$ No further surgery

Sentinel Node

Positive — All had completion axillary dissection

ACOSOG – Z-010

All Patients Had Sentinel Node Only

If negative(-) – No further surgery

If positive(+) – ACOSOG Z011

¹/₂ patients had completion axillary dissection

¹/₂ patients – No further surgery

232 Surgeons4,000 Cases – Sentinel Nodes

Results

B-32

- No difference in recurrence if sentinel node is negative
- No benefit to completion axillary dissection
- ACOSOG Z-010
 - No increase in axillary recurrence in sentinel node negative versus historical controls
- ***Z-011
 - No increase in axillary recurrence in patients with 1-2 positive sentinel nodes versus completion dissection

There Is No Benefit to Completion Axillary Dissection in Patients with a Clinically Negative Axilla, Unless They Have 3 or More Sentinel Nodes Positive

B-06 B-14 B-17 B-17 B-24 All studies showed that if patients did get a second occurrence in the breast – 90% were within the same quadrant!

Question –

Is there a better way to give radiation??

Breast Brachytherapy Scientific Rationale

- The majority of local recurrences after breast conserving therapy occur at or near the tumor bed¹
- Major effect of post-lumpectomy radiation therapy: Reduce risk of recurrence in tumor bed region
- Incidence of "elsewhere" failures appears to be unaffected by whole breast irradiation. <a> 3.8% of patients fail elsewhere regardless of radiation¹
- Whole breast radiation may not be needed in appropriately selected patients.

PROXIMA®

Radiation source port pathway Multilumen, silicone catheter

-)-)-)-)-)-)

Variable 4 - 5 or 5 - 6 cm balloon

Needleless injection site

Balloon Configuration	Balloon Fill Volume		
4 – 5 cm Sphere	35 – 70 cc		
5 – 6 cm Sphere	70 – 125 cc		

Protocol B-39 - Ongoing

- ½ patients receive standard whole breast irradiation 5 days/wk x 6 weeks
- ½ patients receive partial breast irradiation

Mammosite Balloon or 3D Conformal Technique Twice/day x 1 wk – 10 treatments

April 2004 – July 2010

238 patients with 243 breast cancers Median F/U 3.2 years

Main Line Health Bryn Mawr Hospital

April 2004 – July 2010

8 recurrences (ipsilateral breast) – 3.2% Median 3.1 years

Early Stage Breast Cancer Patients Treated with Accelerated Partial Breast Irradiation (APBI) Have a Low Rate of Recurrence and an Acceptable Complication Rate

Further "Targeted" Therapy Analysis of tumors for ER – Estrogen receptor PR – Progesterone receptor HER-2 – Growth protein seen in more aggressive tumors

B-31

All Patients with Positive Nodes – HER-2 Positive

- ½ patients Chemotherapy alone
- ½ patients Chemotherapy + Herceptin

<u>Result</u>

Addition of Herceptin decreased recurrence in node positive, HER-2 positive patients by <u>50%</u>

Herceptin Is an Extremely Effective Drug in HER-2 Positive Node Positive Patients and Is Now the Standard of Care for this Group

Questions – Ongoing Studies

- Should node negative, HER-2 positive patients receive Herceptin?
- Should patients have Herceptin alone or only with chemotherapy?
- Should Herceptin be reserved for patients who recur after chemotherapy?
- What about the other 50% for whom Herceptin did not prevent spread of their cancer?

Genomics - The tumor's genetic make-up + Genetics - Genetics – The patient's genetic make-up

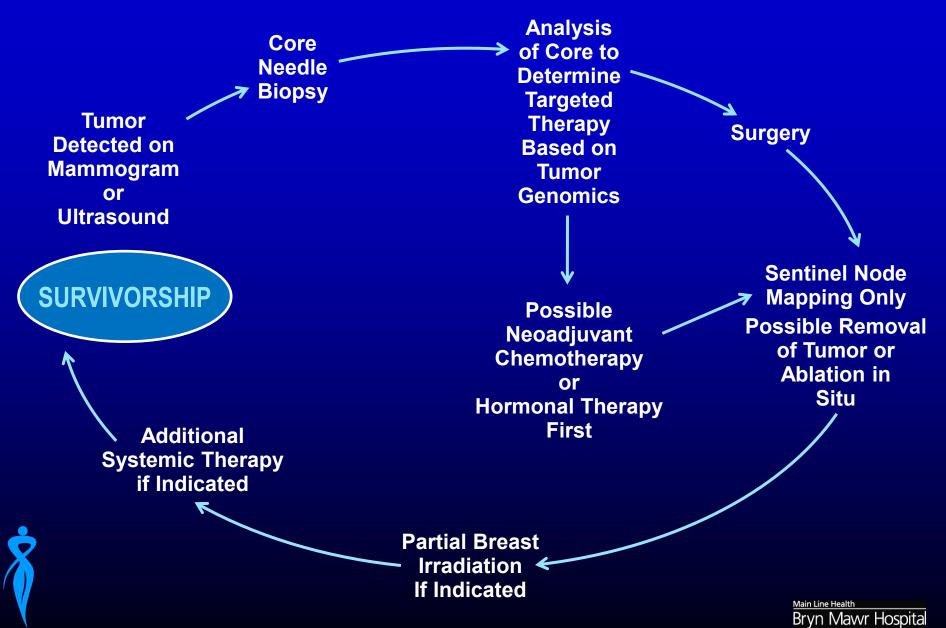
Two Genes – BR CA1 BR CA2 Probably more -

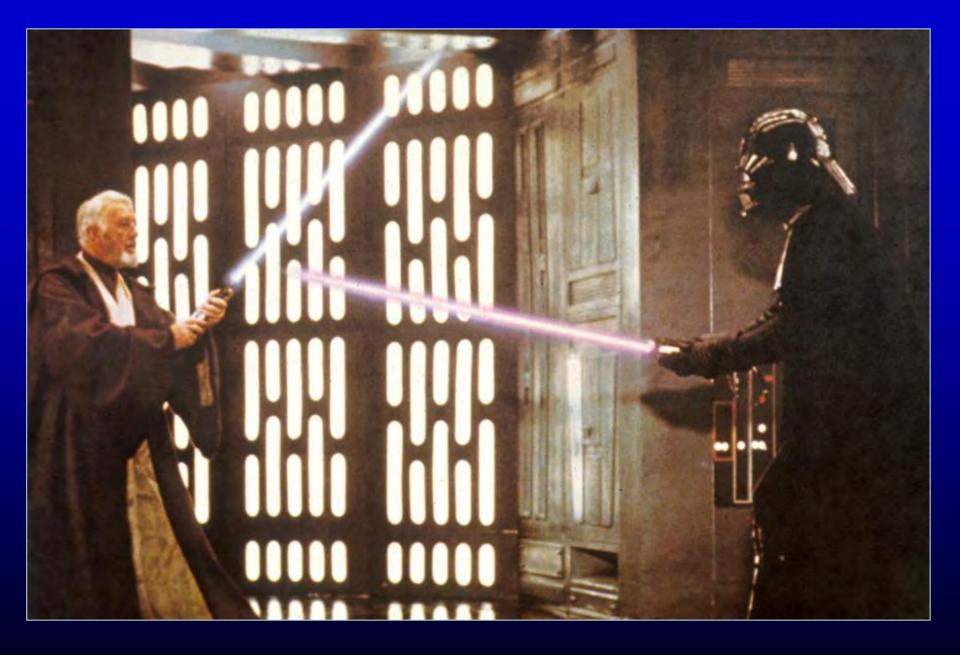
Main Line Health Bryn Mawr Hospital

Of Interest

- Prevention and early detection of lymphedema

 L-Dex
- 2. Improved localization of small cancers lodine seed versus standard wire localization
- 3. Improved methods of detection. Breast Specific Gamma Imaging – BSGI Molecular Breast Imaging – MBI Improved Magnetic Resonance Imaging – IMRI Infrared Scanning
- 4. Methods of destroying a tumor in SITU
 - Radiofrequency ablation
 - Cryotherapy ablation


Of Interest (continued)


 The role of Circulating Tumor Cells (CTCs) and Disseminated Tumor Cells (DTCs) in peripheral blood and bone marrow.

Potential for Future

